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Density expansion of transport properties on 2~ site-disordered 
lattices: I. General theory 

Th M Nieuwenhuizent, P F J van Velthoven and M H Ernst 
Institute for Theoretical Physics, State University, PO Box 80.006, 3508 TA Utrecht, 
The Netherlands 

Received 17 July 1986, in final form 28 November 1986 

Abstract. A systematic kinetic theory is developed for calculating transport properties on 
ZD lattices with random site impurities in concentration c, which can be modelled by 
hopping models. Our main results are expressions in terms of lattice sums for the static 
and frequency-dependent conductivity and for the velocity autocorrelation function. 

1. Introduction 

In this paper we develop a new method based on kinetic theory (Dorfman 1975) for 
obtaining systematic density expansions of transport properties in disordered lattices 
and percolation problems, and obtain new results for static and frequency-dependent 
transport properties, exact to quadratic order in the concentration c of impurities. 

To describe the trajectory of a particle moving in a static environment of scatterers 
we have to specify the dynamics at the microscopic level, which contains the full 
complications of the Liouville equation. The art in kinetic theory is to construct a 
model that is mathematically tractable and physically realistic enough to capture some 
of the essential mechanims. Thus, one simplifies from fluids with general pair interac- 
tions to Lorentz models where one particle moves with a constant speed in a random 
array of fixed hard scatterers. More drastically, one replaces the ballistic trajectories 
between successive collisions by a random walk, and puts the random walker on a 
lattice, and one may restrict his jumps to nearest-neighbour ( N N )  hops. The model 
considered here is one of the most simplified choices according to these options. 

However, the resulting models still have an enormous richness, which depends on 
the structure and connectedness of the underlying disordered lattice. They are known, 
e.g., as the theory of random resistor networks, conduction-percolation theory, ants 
in a labyrinth, etc. 

In these kinetic models we have lost the feature that the mean free path A. at low 
density of scatterers is inversely proportional to their density. In lattice hopping the 
‘mean free path’ is simply the lattice distance. The drastic consequences of this 
simplification can be seen by comparing the hopping models with fluids and Lorentz 
gases. The repeated ring collisions in, say, a 2~ or 3~ Lorentz gas (Dorfman 1975) 
give a contribution to the transport coefficients growing as In A o -  ln( l /c)  and yields 
a relative correction, c In c or c2 In c, respectively, to the low density Boltzmann value 
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of the diffusion coefficient. Therefore a uirial expansion of the diffusion coefficient in 
powers of the density does not exist. 

The occurrence of these logarithmic terms has blocked the further development of 
a systematic kinetic theory for calculating transport properties in moderately dense 
systems. One has developed ring kinetic equations (see the review by Dorfman and 
van Beijeren 1977) to account for the memory effects induced by sequences of correlated 
binary collisions (recollisions, repeated ring collisions), which explain the c In c terms 
and the long time tails of the time correlation functions at low densities, but do not 
give quantitative predictions for transport coefficients in moderately dense systems. 

In our hopping models the uncorrelated binary collisions described by the 
Boltzmann equation are replaced by an ordinary random walk (RW),  and the sequences 
of correlated binary collisions correspond to sequences of repeated visits of the RW to 
single impurities, pairs of impurities, etc (Ernst 1986). For such systems the mean free 
path is simply the lattice distance and a systematic density expansion of transport 
coefficients can be developed. Furthermore, long time tails are still present (Frenkel 
1987) and Nieuwenhuizen et a1 (1986, hereafter referred to as I ) .  

Density expansions have been made of static properties of random lattices, such 
as the spectral properties of mass-disordered harmonic lattices (Lifshitz 1964). In 
percolation problems p expansions ( p  = 1 - c )  have been obtained for percolation 
probabilities (Gaunt and Sykes 1983) and connectedness correlation functions and 
their moments, through a mapping on the q-state Potts model with q = 1 (Fish and 
Harris 1978). However, systematic density expansions of non-equilibrium properties 
beyond the single impurity approximation (Izyumov 1966, Harris and Kirkpatrick 
1977, Roerdink and Shuler 1985, Roerdink 1985) are virtually non-existent. 

There exists an enormous literature on diffusion and conduction in random systems, 
Lorentz gases (Hauge 1974), hopping models or random walks ( R W )  on lattices with 
random disorder in bonds or sites (for a review see Haus and Kehr 1987) and termite 
problems (Hong et a1 1986), dynamic percolation, random resistor networks 
(Kirkpatrick 1973), etc. Most theoretical studies and computer simulations have 
concentrated on percolation problems in the close vicinity of the percolation threshold. 
The standard methods to calculate transport properties for general impurity concentra- 
tion are effective medium type approximations (Kirkpatrick 1973, Watson and Leath 
1974, Odagaki er a1 1983, Odagaki 1986, Garbozci and Thorpe 1986), transfer matrix 
methods (Herrmann et a1 1984), Monte Carlo simulations (Argyrakis and Kopelman 
1980, Pandey and Stauff er 1983) and real space renormalisation group calculations 
(Stinchcombe and Watson 1976, Wilkinson et al 1983, Luck 1985, Hong et a1 1986, 
Costa er a1 1986). 

Lifshitz and Stepanova (1956) have developed a systematic method for expanding 
properties of disordered lattices in powers of the concentration c of impurities. We 
follow partly their method which yields for the coefficient of c’ exact expressions in 
the form of ‘cluster integrals’ (lattice sums) involving 1 impurities. However, the 
Lifshitz ‘trace method’ for evaluating these cluster integrals is applicable to the density 
of states and further equilibrium properties, such as the free energy, that can be expressed 
as integrals over the density of states (Lifshitz 1964, 0 6.1). The cluster integrals for 
non-equilibrium properties, such as moments of displacement, velocity autocorrelation 
function (VACF), etc, are more complicated objects, for which no manageable extension 
of the Lifshitz trace method seems feasible. 

However, we will show here that these non-equilibrium cluster integrals can be 
exactly evaluated using kinetic theory methods. For bond disordered lattices such 



Transport properties on 2D site-disordered lattices: I 4003 

calculations are rather simple (Ernst et a1 1987). For site disorder, to be considered 
in this paper, such calculations are unfortunately rather complicated. 

The reason for presenting our calculations is that this model has been studied 
frequently in the literature (diffusion coefficient D( c), VACF) using computer simula- 
tions and approximate theories. Because of many conflicting results in the literature, 
as extensively discussed in I ,  there is clearly a great demand for exact results. For the 
percolation case (a = 0) exact results up to O(c2) for the diffusion coefficient D ( c )  = 
Do(1+a,c+azc2)  and for the long time tail of the VACF c p ( t ) = ( u , ( t ) u , ( O ) ) ,  namely 
t2q(  t )  - T ~ C +  v1c2( t + CO), have been reported in I. Results for D ( c )  and VACF up to 
O(c2)  for general a values will be obtained in this and the next paper in the series. 

The plan of this paper is as follows. In 9 2 we introduce the hopping model on a 
square lattice with random site impurities and show the close connection between the 
continuous (CTRW) and the discrete (DTRW) time random walk. In Q 3 we develop a 
density expansion and introduce a T matrix resummation to evaluate the required 
cluster integrals. To simplify our results we shall heavily use the symmetry properties 
of Green functions on the square lattices which are summarised in appendix 2. From 
the response function we extract in Q 4 expressions for static and frequency-dependent 
transport coefficients, exact to O ( c 2 ) ,  which are the main results of this paper. These 
expressions were the starting point of the percolation results reported in I. 

2. Continuous and discrete time random walk 

The system to be studied is a square lattice with unit lattice distance, having N sites, 
labelled n = { n x ,  n,} and obeying periodic boundary conditions. A fraction c of the 
sites in the host lattice, chosen at random, is replaced by impurities or scatterers and 
we study random walks on this random lattice. 

In the continuous time random walk (CTRW) the random walker (RW)  pauses at 
every site n during a random waiting time T which is exponentially distributed as 
exp(-T/TO) with T,, the average waiting time. Units are chosen such that T~ = 1. The 
master equation describes the time evolution of the probability distribution pn(  t )  as 

where p denotes one of the four N N  lattice vectors: p = {*1,0} or (0, *1}. We have 
assigned to every site n a random variable $,, representing the transition probability 
per unit time for N N  hops. It is defined as J/, = 1 - bc,, with b = 1 - as 1, where c, = 1 
for an impurity site and c, -- 0 for an impurity free site, namely 

(2.2) 

Here b < 0 corresponds to U > 1 and 0 < b c 1 corresponds to 1 > U 3 0. The master 
equation admits the (normalised) stationary solution 

P:  = c*, = +fl / (N($))  (2.3) 
with (+) = 1 - bc, where the average (. . .) over the quenched disorder is taken over the 
probability distribution (2.2) of the set of random variables { c,}. 

We make some comments on the model. The transition probability per unit time 
for N N  hops +, depends in the present site model only on the site of arrival. 
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The jump rate into an impurity site, $,, = 1 - b = U, may be smaller or larger than 
the rate into an impurity free site with 4, =ao= 1 .  For a = 0 or b = 1 one has the 
standard site percolation problem with inaccessible impurity sites. At small impurity 
concentrations one has the model of blind (unbiased) ants hopping on the percolation 
cluster far above threshold. At low impurity concentration our site problem may also 
be considered as a lattice Lorentz gas (Hauge 1974), where the ballistic motion of the 
moving particle has been replaced by the stochastic motion of the RW. For a >> 1 one 
has ‘superconducting’ impurities, often referred to as ‘termite’ models. 

One may also study the relaxational modes of (2.1) by letting p , ( t )  = p n  exp(-Et), 
where E are the eigenvalues (rate constants). This eigenvalue problem is also identical 
to that for spin wave amplitudes in which N N  exchange integrals are unity and the 
spin magnetisation equals $,, = 1 on a host lattice site and $,, = U on an impurity site. 
In this context the model has been used by Harris and Kirkpatrick (1977) to calculate 
spin wave stiffness constants to O( c )  in the impurity concentration. 

The transport properties of interest are the diffusion coefficient D ( c ) ,  the velocity 
autocorrelation function (VACF) cp( t )  = (v,(O)u,( t ) )  and the frequency-dependent con- 
ductivity. They are all related to the mean square displacement ( n : ) (  t ) .  One may also 
consider the Burnett transport coefficients, which are related to the fourth cumulant 
of the displacements. 

The most important moment is the mean square displacement, in terms of which 
we introduce a time-dependent diffusion coefficient 

d(t)  = i ( a / a t ) ( n l ) ( t )  = lo‘ dTcp(T). (2.4) 

Its long time behaviour represents the static diffusion coefficient ~ ( c o )  = D. The second 
derivative of the mean square displacement is the lattice analogue of the VACF. 

The macroscopic conductivity is related to the diffusion coefficient through the 
Einstein relation Z =constant x noD, where no is the density of carriers in the stationary 
state proportional to the effective number of accessible sites or (effective) free volume 
($) = 1 - bc. In our general models the effective free volume of impurity sites may be 
lower ( a <  1 )  or higher ( a >  1) than that of impurity free sites. In the context of 
transport in porous media ($) is referred to as porosity (Guyer 1987). 

The relation between conductivity and diffusion coefficient on a lattice with a 
fraction c of impurity sites is, in appropriate units, 

W C )  = ($)D(C) .  
We further consider a ‘frequency-dependent’ diffusion coefficient a( z ) ,  which is 

the Laplace transform of the VACF cp( t ) .  Its small-z behaviour gives the static diffusion 
coefficient D( c )  = @( z = 0 ) .  In a similar fashion we introduce a ‘frequency-dependent’ 
conductivity E( z )  = ($)a( z ) ,  where the actual AC conductivity of the system is deter- 
mined by Z ( c ,  w )  = Re Z(iw). A further property of interest is the staying probability 
or return probability P,( t )  of the RW to its point of origin. All transport properties 
described above can be expressed in terms of the macroscopic probability for a 
displacement from m to n in a time t ,  P , , - , , , ( t ) ,  averaged over the quenched disorder, 
i.e. averaged over the the probability distribution of the random variables { c , }  

where the initial positions of the RW are weighted with the stationary solution of the 
master equation, given in ( 2 . 3 ) .  The quantity p ( n r ( m 0 )  is the solution of the master 
equation with initial condition p (  n01 mO) = &,,. 

P n - m ( t )  = ( ~ ( n t l  mo)pO,) (2.5) 
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It is of interest to indicate the connection with the discrete time random walk 
( DTRW) which is particularly relevant because computer simulations are done with 
discrete time steps. 

We consider again a lattice with a random mixture ofjump rates go = 1 and (+ = 1 - b. 
In the case U < uo = 1 (impurity bonds with lower conductivity than that of the host 
lattice bonds) we set our clock to tick every l / u o  seconds and normalise the total 
jumping probability to unity f o r  a site without impurity N N  sites. Let T denote the number 
of ticks or of time units. The probability to find the RW at site n after ( T +  1 )  time 
units is then given by 

P n , r + l - P n , r = i C  [ + n P n + p , T - + n + p P n , T ~ E  - ( f p r ) n  (2 .6)  
P 

which is very similar to (2.1) for the CTRW. 
On a uniform lattice there is a simple relationship between the probability distribu- 

tion and related quantities of the CTRW at time t and those of the DTRW after T hops 
of the RW (Haus et al 1983). The same relationship holds on a disordered lattice, if 
the waiting time distribution is the same at each site (Machta 1981) 

(2.7) 

where q s ( t )  is the probability for exactly s ticks of our clock during a time interval t .  
The second equality holds, since the waiting time in our model is distributed according 
to exp(-t), from where 9s ( r )= ( t s / s ! ) exp( - t )  follows. For the VACF cpr and the 
time-dependent diffusion coefficient 6s in the DTRW we find similarly 

where 8 + ( t )  is a Dirac delta function, normalised to unity on the time interval [0, CO). 

These relations have been used by Frenkel (1987) to transform his results for the 
discrete time VACF cp7,  and diffusion coefficient 0, obtained from computer simulation, 
into the VACF cpf and diffusion coefficient d(t )  with a continuous time t. The latter 
quantity can be compared directly with our theoretical predictions. From here on we 
restrict ourselves to the continuous time version. 

For our purpose it is more convenient to write the master equation for the CTRW 

(2.1) in the form 

where E p f ( n )  = f ( n + p ) .  We are interested in the moments of displacement ( ( n ,  - 
mx) ' )  = E,,, ( n ,  - m , ) ' ( p ( n t ;  mO)) where ( p ( n r ;  m0))  is the time-dependent probability 
distribution p ( n t ;  mO) = p ( n t  I mo)p,(O) (see (2.5)), and the initial distribution p,(O) 
is always taken to be the stationary solution (2.3), namely p,(O) = p L .  Thus we have 
for the macroscopic distribution of displacements 

(2.10) p n - m ( t )  = ( ~ ( n t ;  mO)) = ((e-'L)nm$m)/ i~(+). 



4006 Th M Nieuwenhuizen et a1 

The response function is the generating function for the (Laplace transformed) moments 
of displacement and follows from (2.10) as 

F(q ,  z ) =  C e x p [ i q ( n - m ) ~ ( ( z + i ) ~ ~ $ m > / ~ ( $ )  
(2.11) 

where q,,, is the Fourier representation of the diagonal matrix $,, = $%a,,,,,. In general 
the matrix A,,, is defined in terms of its coordinate representation A,, as 

A,,,= N - ’  exp(inq)A,,,, exp(-imq’) 
n,m 

(2.12) 

where q is a reciprocal lattice vector restricted to the first Brillouin zone (iBz). We 
frequently use the orthogonality relations 

N - ’  C exp[in(q - q ’ ) ]  = a,,. N - ’  exp[iq(n - m ) ]  = a,,,. (2.13) 

Here and in the following all q sums extend over the iBz. Derivatives of the response 
function yield the mean square displacement and higher moments, for example 

( n f ; ) ( z )  = -(a/asJ2F(4, z)l,=o. (2.14) 

n 9 

3. Density expansions 

To derive a density expansion we follow Lifshitz and Stepanova’s method and expand 
the response function in (2.11) in powers of the concentration c of impurities: 

where ( H )  is actually the average of 
( $ ) F ( q ,  z )  = ( H ( q ,  z ) )  =.Lo(% z )  + cf,(q, z )  + c2f2(q, z )  +. . . 

H ( q ,  z )  = ( ( z  + ww,, 
(3.1) 

(3.2) 
over the quenched disorder. Then 

.Lo(% z )  = Ho 
fl(4,  z )  = [ a (H) /dc Ic=o=  N ( ( H 1 ) -  Ho) 
f2(4,  z )  = t[a2(H)/ac21c=o = 4N2((H2) -2(H,)+ Ho) 

(3.3) 

where fr(q,  z )  is simply proportional to the Ith finite difference of (H, ) .  Let H,,, be 
the (unaveraged) response function of a lattice containing precisely m impurities at 
the fixed sites {n, , n 2 ,  . . . n,} and let 

h , ( n l , n  2 . . .  n , , , ) = N [ H , ( n , n  ,... n , ) - H o ]  (3.4) 
be the addition to the unperturbed response function Ho. 

For an asymptotically large number of sites N, h , ( n , ) = h ,  is independent of n, 
and h 2 ( n , ,  n2) = h 2 ( n 2  - n l ) ,  while h2( n) + 2h, as n + CO. Next, we write (3.3) in terms 
of h, and write out the averages in (3.3), observing that the probabilities for finding 
different impurities at different sites are uncorrelated in the present model. This 
immediately yields for fi the following cluster integrals (lattice sums): 

f o =  Ho f1= hl 

f 2  = t  C ( h * ( n )  -2h1) (3.5) 
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The cluster integrals in (3.5) have the same structure as the 1-tuple collision integrals 
in kinetic theory. For deterministic models (fluids, Lorentz gases) higher cluster 
integrals start to diverge as z + O ,  causing a breakdown of the density expansion of 
transport coefficients and leading to the appearance of p' In p terms in their small 
density ( p )  behaviour (Dorfman and van Beijeren 1977). In our stochastic models of 
RW on disordered lattices the cluster integrals converge as z+O,  but in the presence 
of random traps small-z divergences start to reappear again (Felderhof er a1 1982). 

In order to evaluate these quantities we follow the standard methods of kinetic 
theory and introduce a binary collision expansion of the m impurity operator H, = 
( ( z  + L,, , ) -19,)qq where L, and Y,,, are as L and '4' with c, = 1 for n E { n , ,  n2 ,  . . . , n,,,} 
and c, = O  otherwise. For convenience of notation we drop the subscript m, unless 
explicit specification of the impurity sites is required. 

To proceed we split L and * in (3.2) into a random part, linear in c,, and into a 
sure part, independent of c,, and referring to the uniform host lattice L = Lo - SL and 
V = 1 -a*, where 1 is a unit matrix and 

In the equations above, Cqq, is the Fourier representation of the diagonal matrix 
C,, = c,S,,,, and 
A 

w ( q )  =t [ 1 -exp(iqp)] = 1 - t c ,  - f c 2 .  
P 

(3.7) 

Here and in the following we use the shorthand notation 

c1 = cos qx c2 = cos q,, s, =sin qx s2 = sin q,,. (3.8) 
A formal perturbation expansion of H ( q , z )  in (3.2) can be obtained by using 
( z + L 0 - S L ) - ' = g ~ , ; " = , ( 6 L g ) '  where 

gq,,= g(q)S, , ,= (z+Ww(q))-lSq4f. (3.9) 
Insertion of this expansion in (3.4) in combination with Ho = ( z  + Lo);: = g( q )  yields 
after some rearrangements 

(3.10) 

where 

Aqq' = SL,,. - 6'Pq4,( z + o (9')) = -b ( z + w ( 4  - 4')) Cq4,. ( 3 . 1 1 )  
In view of the developments in later sections we want to factorise the q and 
q' dependence of 6L,,~/Cq,~ and Aqq./Cqq.. For the square lattice this can be 
done conveniently using the following 5 x 5 matrix and 5-vector notation, where 
e ( q )  = { e i ( q ) ,  i = 0 ,  1 , 2 , 3 , 4 }  and 

In this basis we can write 

(3.12) 

(3 .13)  
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Verification of (3.13) is straightforward by working out the matrix multiplications using 
(3.12), (3.11) and (3.6). Regarding notation we follow in general the convention that 
5 x 5 matrices are denoted by upper case letters and 5-vectors by lower case letters. 

We consider a typical term in the perturbation expansion (3.10) and insert for SL,,. 
and Aqqs the expressions (3.13), namely 

SL,,. = N - ’  1 exp[i( q - q’)n]c,e( q )  Ve( q ’ )  
n 

(3.15) 

and a similar expression for Aqq. with V replaced by v. The summations run in fact 
over impurity sites only. This yields 

((Sb)’A)qq’= C S&,g(q,)SLq,q2.. . g(q,)Aq,q, 
41...41 

= N - ’  C c n , c n 2 . .  . cn,cm exp( iqnMq)  VG(n, - n J  ~ C ( n 2 -  . . 
nln2. , .nrm 

x V G ( ~ /  - m)Ve(q‘) exp(-iq‘m). (3.16) 

Here we have introduced the 5 x 5 matrix C(n,  z) with elements 
r 

(3.17) 

and we used the shorthand notation 

(. . .)= N - ’  (...) 2 (27r-* (3.18) 

In the thermodynamic limit ( N  + a) the q summation is replaced by an integral over 
the first Brillouin zone. A matrix element of the lattice Green function in (3.17) is 
essentially the (Laplace transformed) probability for a displacement n on a uniform 
lattice, and the factors V and v represent ‘collisions’ of the RW with an impurity. 

Suppose that two successive site labels, n’ and n”, refer to the same site, then 
cnq,.8 = (c,,)’ and C(  n’ - n”,  z) = G(0,  z )  is essentially the probability of return to the 
same site on a uniform lattice. If we sum all possible returns to the same impurity 
site n (‘repeated ring collisions’ in kinetic theory language) we obtain the single impurity 
T and .I; matrix: 

q s l B Z  N*m 

ic 

T(z) = c ( VC(0))‘V = (1 - vG(o))-’ v 

T ( z ) =  ( V C ( O ) ) ’ Q = ( l -  vc(O))-’v. 

/=0 

D 

I=O 

(3.19) 

The properties of these matrices, needed in later sections, are studied in appendix 1. 
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By carrying out the T matrix resummation in (3.16) we obtain 

g-’h,  = N 1 ( ( a L n g ) f A m ) q q  
I = O  

CO 

= mce(q) T e ( q )  + e’ cnI . . . cn,co exp(-iqn,) 
I = 1  n ,  ... n,  

x e ( q ) R ( n l -  nJR(n2- nA.  . . R(nl )Te (q )  (3.20) 

where c, is only non-vanishing for m specified sites, one of which is chosen to be the 
origin. 

The prime on the summation sign indicates the constraint that any pair of consecu- 
tive site labels be different. We have further introduced 

(3.21) 

We first consider theT matrix expansion (3.20) for rn = 1. Since the lattice sum contains 
at least two impurities (at n = 0 and at n, # 0) only the first term survives and we find 
for the coefficient f l  in (3.5) the exact result 

(3.22) 

where T ( z )  sums all possible returns of the RW to a single impurity. Of course, fo in 
(3.5) equals g ( q ) .  

Next, we consider f2(qr z)  in (3.5) which requires h 2 ( n )  -2hl ,  describing the 
response function of a system with, say, impurity ‘1’ at the origin and impurity ‘2’ at 
n # 0, so that c, = S,,+ a,,,,,. Since the constraints of the T matrix expansion requires 
that consecutive site labels in the sequence cn,cn, . . . co be different, the only terms 
present in (3.20) describe sequences [12], [121], [1212], [12121], . . . . We separately 
sum the subsequences of all walks starting and ending at the same site, yielding 

R(n, z) = T ( z ) G ( n ,  z )  

f1(q, 2)  = h ( q ,  z )  = g 2 ( 4 ) e ( q ) f e T q )  

(h2 (n )  -2h1)same = e ( q ) [ l -  R ( n ) R ( - n ) l - ’ R ( n ) R ( - n ) T ~ ( q )  
= e ( q ) [ l -  i 2 ( n  ) 1 - ’ i 2 ( n )  T e ( q ) .  

We have used the relation R ( - n )  = S p ( n ) S  due to symmetry under inversion (see 
(A2.2) of appendix 2) and introduced R (  n, z )  = R (  n, z ) S ,  where S is a diagonal matrix 
(see (A2.1)) with elements S=diag{l ,  1, 1, -1, -1). The sum of all walks, starting at 
the first impurity and ending at the second one, can be summed similarly. Therefore, 
our final result for the coefficient f2 (q ,  z )  of the response function in (3.5) is 

f 2 ( q ,  z )  = k 2 ( q ) e ( q )  c ( 1  - f f 2 ( n ) ) - ’ i 2 ( , ) T e ( q )  
n + O  

(3.23) 

From these results in combination with (3.1) we can calculate all moments of displace- 
ment, return probabilities, etc, exact to O( c 2 )  terms included. 

4. Frequency-dependent transport coefficients 

In this section we derive a general expression for the Laplace transform @ ( z )  
of the VACF cp(t) ,  defined in (2.4), and for the ’frequency-dependent’ conductivity 
E( z )  = (+)@( z ) ,  valid for all z values and exact to O( c 2 )  terms included. The limiting 
values of these quantities as z + 0 determine the static transport properties. 
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The VACF + ( z )  can be extracted from the response function F ( q ,  z )  using 
(2.4), (2.11) and (2.14), namely @ ( z )  = - f z 2 F ” ( 0 ,  z ) ,  where we use the notation 
A’(0, z )  = aA(q, z ) / J q x l s = o ,  etc. Since E(z) = ( $ ) @ ( z )  it follows from (3.1) that 

E ( z )  = -iZ’(H”(O, z ) ) .  (4.1) 

The calculation of S(z)  to zeroth and first order in c is simple and yields S ( z )  = 
~ - c t 3 ( z ) + 0 ( c 2 ) .  This follows from (3.1) withf,(q, z ) = g ( q )  andf,(q, z )  in (3.22), in 
combination with (3.12) and (A1.5). 

The calculation of the O ( c 2 )  term, - t z 2 f l ( 0 ,  z ) ,  as defined in (3.23) is much more 
involved and we only sketch some intermediate steps. First, observe that the 5-vectors 
e ( q )  in (3.23) and their qx derivatives at q = 0 are given by 

ej (0) = e,!(O) = 4, eY(0) = i( s,, - sj2). 
Next, we differentiate (3.23) twice with respect to qx and use the relation e ( O ) R ( n ,  z )  = 
e(O)R(n, z ) S  = 0, a5 follows from (3.21) and e ( O ) T ( z )  = 0 (see (Al.1)).  The result 
reads in a schematic notation 

(4.2) -2z 1 2 f 2 ( 0 ,  I I  z )  = -ie’(O)(A+B)e’(O) - f e” (O) (A+B)e (O)  -fe’(O)in,Be(O) 

where we imply summations over n and use the abbreviations 

A = (1 - R2( n ) ) - l i * ( n ) T  

B = (1 - R2( n) ) - ’k (  n)%. (4.3) 

In the first term on the RHS of (4.2) a common factor ( 1  - R(  n ) )  in the numerator and 
denominator cancels and F ( z )  may be replaced by t ( z )  (compare (A1.4) and (A1.5)) 
since only the (33) element enters. The first term contains the only n summation that 
extends over the entire lattice. All remaining terms in (4.2) are restricted to the four 
N N  sites p on account of the relation R ( n ) 7 e ( O ) = - b t a ( p ) S n 4  (see (A1.8)). In the 
second term on the R H S  of (4.2) we cancel a common factor ( 1  + R( n)) in the numerator 
and denominator. The resulting expression has the structure of a 5-vector w ( p )  with 
components { ~ ( p ) } ~ .  Use of the cubic symmetry shows that the component with i = 2 
disappears from the N N  sum and that we can express everything in the N N  vector 

The last term in (4.2) is again restricted to NN sites p, where only the x components 
of p1 = {1,0} and p3 = {-1, 0) are non-vanishing. Their contributions are equal by cubic 
symmetry. Combining the above results yields then 

PI ={I,  0). 

-2z 1 2 f2(0, II z )  = [ ( 1 + ~ ( n ) ) - 1 ~ ( n ) r ] 3 3 + i b { [ ( l + R ( p l ) ) - ’  
n#O 

+ ( I  - R ( P l ) ) - ’ l ~ ~ ( p l ) } 3 + ~ [ ( ~  - R ( p l ) ) - l ~ ~ ( p l ) l ,  * (4.4) 
The purpose of the following steps is to transform the O(c’) terms in (4.4) by making 
the matrix elements real and to simplify them further by dividing numerators and 
denominators by a common factor t ( z ) .  We start by introducing the real matrix 

g(n, z )  = sc g ( 4 ,  z )  exP(-iqn)aq)e(q)Sc (4.5) 

where the 5-vectors d ( q )  and e ( q )  have been defined in (A1.7) and (3.12), respectively. 
The transformation matrix S, is diagonal with matrix elements S, = diag{l, 1 ,  1 ,  i, i} 
with i = m, and has the properties S:S, = 1 and S: = S, where S is defined in (A2.1). 
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To prove that (4.5) is real one takes the complex conjugate and uses the third symmetry 
relation of (A2.2). Next we observe that 

~ ( n ,  z )  = t ( z )  1 g(q,  z )  exp(-iqn)d(q)e(q)S 

= s T r ( z ) g (  n, z)s, .  (4.6) 

Here we have used R ( n )  = R(n)S and (3.21), (3.17) and (A1.6) and the properties of 
S,. By inserting (4.6) into the first term of (4.4) we find 

[(1+ k ( n ) ) - ' $ ( n ) t ] 3 3  = [ ( t - '  + g (  n ) ) - ' g (  n ) t ] 3 3  = k33( n, z ) .  (4.7) 

We have also used the relation M33 = {S:MS,}, , ,  valid for the (33) element of a matrix 
M. Similarly we find for the next term in (A3.3) 

ib[(l+R(pl))-'tcu(p,)l33 = b [ ( t - ' + g ( p l ) ) - ' a ( P 1 ) 1 3  Q 3 ( Z )  (4.8) 

where we have defined a( p l )  =S,cu( pl) =${O,  -1, 1,2,0}. Finally we introduce 

(4.9) 

(4.10) 

The final simplification is a proof of the identity ml(z)  + m 3 ( z )  = 0. In fact we shall 
prove the more general result that the system of linear equations 

( t - ' - g ( p l ) ) m  = M p 1 )  (4.11) 

with g ( p , ) = g ( p , ,  z )  has the exact solution m ( z )  =$b2{0, -1, 1, l ,O},  which implies 
the above identity. To verify the solution we first note that goi(  n, z )  = 0 on account of 
(4.5) and (A1.7). Furthermore g , ( p , ,  z )  = O  for j Z 4 ,  as can be seen from (A3.4) 
because the integrand for n = pj is an odd function of qy. Furthermore a, = a4 = 0, so 
that m o ( z )  = m 4 ( z )  = O .  Hence we can restrict ourselves to the (123) subspace. 

The simplest way to proceed is to substitute the solution into (4.1 1) and show that 
the resulting equations are identities. This ends the proof of the identity. 

Inserting these simplifications into (4.4) and combining this with the low density 
results, derived below (4.1), we obtain the following result for the frequency-dependent 
conductivity Z( z )  = (+)@( z )  and VACF @( z ) ,  where (+) = 1 - bc, exact to O( c') terms 
included: 

E( Z )  =$ - C f 3 (  Z )  + C2( K 3 3 (  Z )  + Q3( z ) )  + o( c3) 

@ ( z )  = $+acb(l+ bc) - c(1 + b c ) t , ( z )  + c ' ( K ~ ~ ( z )  + Q 3 ( z ) )  + O ( c 3 )  
(4.12) 

where f 3 ,  K33 and Q3 are elements of 5 x 5 matrices t and K and a 5-vector Q, defined 
as 

K ( z )  = c W n ,  z )  = 

Q ( z ) = ( t - ' ( z ) + g ( p i ,  z ) ) - ' a ( p i ) b  

( t - ' ( z ) + g ( n ,  z ) ) - ' g ( n ,  z ) t ( z )  
n f O  n f O  

(4.13) 

where p1 ={1,0} is a NN site of the origin, and the column 5-vector a(pl) has the 
elements a( p l )  = (0, -$, f ,  4,0}. 
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0 

The lattice Green function g ( n ,  z )  is a transformed version of (3.17) and is defined 
in (4.5). The diagonal t ( z )  matrix is defined in (A1.4) and (A1.2). The general 
expressions (4.12) for the VACF and the frequency-dependent conductivity E(z)  are 
the main results of this paper. They were the starting points for the calculations 
reported in I .  

To obtain explicit values for diffusion coefficient, conductivity and VACF at different 
U values one has to calculate lattice Green functions g ( n ,  z) for all sites, to invert the 
matrices ( t - ’ (  z )  + g( n, z)) and to carry out the lattice summations in (4.13). This still 
requires a great deal of further analysis and numerical calculations, which will be 
given in a subsequent article. 

For the special case of percolation (see I), where the impurity sites are excluded 
sites with U = 0 or 6 = 1, we have already evaluated the O(c) and O(c2) coefficients in 
the density expansion of the diffusion coefficient and the DC conductivity. Our results 
are in very good agreement with the results obtained by Harris and Kirkpatrick (1977) 
from computer simulations, and with the approximate analytic result of Watson and 
Leath (1974) for the DC conductivity, B ( c )  = :( 1 - TC +$rc2). 

The VACF in the percolation case has also been calculated in I and our detailed 
results are in very good agreement with the recent results of computer simulations by 
Frenkel (1987) on this hopping model. 

f 2  

f 3  

f 4  
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Appendix 1 

This appendix deals with properties of the T matrix. Consider first the matrix G(0, z) 
defined in (3.17). From the parity of the integrand under the reflections qx t, -qx,  and 
qy* -4>, and qx-qy  it follows that G(0,  z )  has the same structure as the matrix e in 
(3.14), namely it is diagonal except in the (01) subspace. To calculate T ( z )  and F ( z )  
we only have to invert a 2 x 2  matrix. This gives 

T ( z )  = 

with 

(Al . l )  

(A1.2) 
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Here we have introduced the matrix g(n ,  z )  (see (4.4)) with 

(A1.3) 

g,3(0, Z )  = - se: = -G33(0, Z )  = -G44(01 Z )  

where the integration symbol denotes the average (3.19) over the I B Z  with g = g(q, z )  = 
(z+w(q)) - '=  (zeo+e,)-'. 

In the body of the paper we also use the closely related diagonal t matrix, labelled 
by i, j E (0, 1,2,3,4} with elements 

t(z)=diag{l,  1 1 ,  t2,13,l3}* (Al.4) 

I 

In a similar manner we find for F ( z )  in (3.19) 

/ - ~ 6  -b 1 0 

t2  

13 

t3  

(A1.5) 

where il( z )  = t l (  z ) [  1 - 6 5 g( e ,  - l)eo]. To prove the relation f l 0 ( z )  = - b we used 
g(el  - l ) (e ,  + zeo) = 5 ( e l ( q )  - 1) = 0 as follows from the definition of g and 

zeo + e ,  = z + w ( q ) . 
Next we summarise some properties of T matrices, needed in the body of the paper: 

T ( z ) e ( q )  = t ( z ) k ( q )  (A1.6) 

as follows from the previous equations, where 6 ( q )  is a 5-vector with elements 

4 q )  = (0, e1 - 1, e29 e , ,  e41 (A1.7) 

with e j ( q )  in (3.12). A further property used is 

&n, z ) F ( z ) e ( O )  = -6t(z)cu( p)S,, (A1.8) 

where the occurring symbols are defined in (3.21), (3.19) and above (3.23). The RHS 
is only non-vanishing if n is a NN site pi of the origin, where p1,3={*1,0} and 
p2,4={0, *l}. Here the 5-vector a( p , )  is given by 

a ( p 1 ) = f { 0 ,  -1, 1, -2i,O} (A1.9) 

with i =a. The remaining cu(p,) can be obtained through the symmetry relations 
of appendix 2. 

The remaining part of this appendix is a derivation of (A1.8). We first observe 
that e ( 0 )  = {1,0,0,0,0} so that F ( z ) e ( O )  = F*,(z) represents the first column vector of 
F ( z )  with elements F . , ( z )  = {-6z ,  -6,0,0,0}. Consequently the components of the 
5-vector in (A1.8) are 

(Al.  10) ( R ( n ,  z ) F ( z ) e ( 0 ) ) j  = -6(&jl(n,  z ) + ~ l ? ~ ~ ( n ,  z ) ) .  
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Using the definitions (3.19) and (4.2) we can express R(n ,  z )  as 

I I 
I 

k(n, z )  = T gee exp(-iqn)S= t gde exp(-iqn)S. 

Consequently the RHS of (A1.lO) can be written as 

~ ~ s ( A 1 . 1 2 )  = -bt , (r)  g4.(zeo+ e , )  exp(-iqn) = -bt,(z)cyj( p ) 6 , ,  

where we have used the relation g-'  = ze,+ e ,  and defined a ( p )  = d exp(-iqp). Com- 
bining these equations yields finally (A1.8). The first equality follows from (A1.3) and 
shows that the LHS is independent of z, apart from the factor t j ( z ) .  Hence the second 
equality. 

The angular average J q  . . . is only non-vanishing if n = p ,  since the 5-vector k ( q ) ,  
defined in (A1.7), is a linear combination of c1, c2, s, and s2 (see (3.12)). For p1 = (1 ,O)  
the average yields the result (A1.9) and combination of the above equations proves 
(A1 3) .  

This appendix deals with symmetry properties under reflections of the lattice Green 
functions C(n,  z )  in (3.17) and g(n, z )  in (4.5) and related 5 x 5 matrices and 5-vectors. 
We define the following transformation matrices, whose square equals the unit matrix: 

\ I I /  

s=s&,= 
l l  1 

I - 1  -1 

s x y  = 

(A2.1) 

They correspond respectively to reflections with respect to the y axis, the x axis, the 
origin and the diagonal n, = n,. One can easily verify that matrix C(n,  z )  in (3.17) 
satisfies the following symmetry relations under reflections: 

Reflection n + n' 

{ n x ,  n y ) + { n x ,  - f l y )  

Symmetry relations 

C (  n', 2) = SYC( n, Z)S, 
{ n x ,  n,}-+ { - n x ,  ",I 

{ n x ,  n y ) + i - n x ,  - n y }  
{ n x ,  n y } +  in,, nx> 

C (  n',  2)  = SxG( n, Z)SX 

C(-n ,  z ) = S G ( n ,  z ) S  
G (  n',  z )  = SxyG( n, Z)Sx,. 

(A2.2) 

The matrices V, v, T, and G(0,  z )  in (3.14), (3.19), ( A l . l )  and (A1.3) are invariant 
under reflections, namely they commute with all S matrices in (A2.1). Consequently 
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k(n, z) in (3.21), g(n ,  z)  in (4.5), and products of these matrices satisfy the same 
symmetry relations (A2.2). 

The transformation properties of a 5-vector a(n)  (such as in (4.4) and (A1.9)) are 
similar, namely 

a( n ’ )  = Sa(  n )  for n -* n’ (A2.3) 

where n’ and S’ stand for any of the transformations in (A2.2). 
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